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Omnidirectional cameras are becoming increasingly popular in computer vision and robotics. Camera cal-
ibration is a step before performing any task involving metric scene measurement, required in nearly all
robotics tasks. In recent years many different methods to calibrate central omnidirectional cameras have
been developed, based on different camera models and often limited to a specific mirror shape. In this
paper we review the existing methods designed to calibrate any central omnivision system and analyze
their advantages and drawbacks doing a deep comparison using simulated and real data. We choose
methods available as OpenSource and which do not require a complex pattern or scene. The evaluation
protocol of calibration accuracy also considers 3D metric reconstruction combining omnidirectional
images. Comparative results are shown and discussed in detail.
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1. Introduction

In recent years the use of omnidirectional cameras has widely
increased. The major advantage of this type of cameras is their
wide field of view (FOV) which allows them to have a view of
the whole scene. They have been used in such different areas as
surveillance, tracking, visual navigation, localization and SLAM,
structure from motion, active vision, visual odometry, photogram-
metry, camera networks, reconstruction of cultural heritage, etc.
There exist several types of omnidirectional cameras which can
be classified as central and non-central. Among the non-central
cameras we can find the rotating camera, which consists of a con-
ventional camera with a mechanic system that allows it to move
along a circular trajectory and to acquire images from the sur-
roundings. Polycameras which are camera clusters of conventional
cameras pointing to different directions in a particular configura-
tion. Another type of non-central systems are dioptric systems
which use wide-angle lenses such as fish-eye lenses combined
with conventional cameras. The central omnidirectional cameras
are those which satisfy the single-viewpoint property. This is an
important property since it allows to easily calculate the directions
of light rays coming into the camera. Baker and Nayar [1] exten-
sively studied the catadioptric systems, combinations of camera
lenses and mirrors. They proved that the elliptic, parabolic and
hyperbolic mirrors, combined with conventional cameras, are the
only ones that ensure the single-viewpoint property, provided that
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the mirror is positioned appropriately relative to the camera. The
two most popular of such systems are the hypercatadioptric and
the paracatadioptric ones. The former is composed by a hyperbolic
mirror and a perspective camera. The latter is composed by a par-
abolic mirror and an orthographic camera. In combination with the
fish-eye lenses these are the three omnidirectional system most
used by the computer vision and robotics communities.

There exist several geometric and analytic models to deal with
omnidirectional systems, see Sturm et al. [2]. In the case of central
catadioptric systems Svoboda and Pajdla [3] propose different
models for different mirrors and give formulae for the associated
epipolar geometry. Strelow et al. [4] deal directly with the reflec-
tion properties of the rays on the mirror. A unified model was pro-
posed by Geyer and Daniilidis [5]. In this work they present the
sphere camera model which allows to deal with any central cata-
dioptric system. Later this model was extended by Barreto and Ara-
ujo [6] and Ying and Hu [7]. This sphere model is the most used
model in current days. With respect to the non-central systems,
in particular for fish-eye lenses we can find the following ap-
proaches. Swaminathan and Nayar [8] model this type of projec-
tions as a combination of three types of distortion. These
distortions are the shift of the optical center, radial distortion
and decentering distortion. Micusik and Pajdla [9] compute the
projection of 3D points to the camera plane using trigonometric
functions which are linearized through Taylor series. This is done
for a particular type of camera. Kannala and Brandt [10] propose
a generic model to deal with all cameras equipped with fish-eye
lenses. They consider the projections as a series of odd powers of
the angle between the optical axis and the incoming ray, then they
complete the model by adding radial and tangential distortion.
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Courbon et al. [11] propose a generic model to calibrate any fish-
eye system based on the sphere camera model. Another category
that should be mentioned is the generic methods that can model
any arbitrary imaging system. Grossberg and Nayar [12] propose
a method based on virtual sensing elements called raxels which
describe a mapping from incoming scene rays to photo-sensitive
elements on the image detector. This work has inspired many
works and a list of some of them can be found in Ramalingam
et al. [13].

Most of the applications mentioned before require to recover
metric information from the environment. This 3D information is
crucial when the omnidirectional cameras interact in real scenar-
ios. The metric information depends entirely on the complete cal-
ibration of the omnidirectional system. For these practical
applications the camera calibration is a basic step for subsequent
and higher level tasks. The accuracy of such applications relies
on the accuracy of the camera calibration. A considerable number
of approaches to either calibrate central catadioptric systems or to
calibrate fish-eye lens systems or both have been developed. More-
over, as we have observed they can use different projection mod-
els. With respect to central catadioptric systems, there exist
some approaches that separate the calibration of the perspective/
orthographic camera from the computation of the mirror parame-
ters [3,14]. However most of them deal with the catadioptric sys-
tem as a whole. Some of these methods use single or multiple
views of a 2D pattern [10,15-19], 3D pattern [20] previously pre-
sented in [21], cylinder pattern [22], some others use a single
image containing features like lines [23-26,7,27-31]. Finally there
are other methods that perform a self-calibration of the system
[32-35].

1.1. Contributions and related work

As observed above there exist many calibration methods. They
use different techniques and models to calibrate the omnidirec-
tional systems. Some works have tried either to classify or to com-
pare them. Ying and Hu [7] classify the calibration methods in
three categories: (i) Known World Coordinates; (ii) Self-calibration
and (iii) Projection of lines. They only consider 7 methods. On the
other hand, they do not perform any comparison with any of such
methods. A more specific classification is given by Deng et al. [17]
where 10 methods are grouped in five categories: (i) Self-calibra-
tion; (ii) Sphere-based calibration; (iii) Line-based calibration;
(iv) Point-based calibration and (v) 2D calibration. We observe that
methods based on 2D patterns have appeared emulating calibra-
tion methods for conventional cameras. The sphere-based category
only contains one method, which also uses lines and it could be
classified in that category. In that work there is no comparison of
the proposed method to any other. Frank et al. [18] identify three
big groups of calibration methods: (i) Known World Coordinates
which include those based on 2D patterns, which from our point
of view should belong to different categories; (ii) Geometric Invari-
ants which include the methods based on projections of lines and
(iii) Self-calibration methods. They mention a total of 8 methods. A
comparison of the proposed method with the online available
methods [15,16] is presented. They use 4 different data sets includ-
ing two fisheye, a paracatadioptric system and a system with very
small distortion. Since method [16] does not allow the manual
extraction of grid points, the authors only consider those images
where the grid points are extracted successfully, having a limited
set of images. This situation has as consequence a poor calibration
of the system. In our paper we extract the grid points manually,
allowing the methods to have the maximum data available, which
permits to obtain the best performance and in consequence to per-
form a fair comparison of the methods. Toepfer and Ehlgen [22] do
not present a classification but a comparison of their proposed

method with [15,16,36]. The performance of the methods is given
considering a combination of the root mean square error (we as-
sume the reprojection error) with the number of parameters of
the method, through the principle of minimum description length.
However it is not clear which catadioptric system has been cali-
brated neither how the method [36] is adapted to work with cata-
dioptric systems.

As a contribution of this paper we present a classification of the
existing approaches to calibrate omnidirectional systems. We pro-
pose five categories based on the main entity required by each
method to perform the calibration of the systems. We also present
in Table 1 the relevant information of each method according to
valuable criteria: pattern or entity required, considering the mini-
mum number of elements, number of views, analytical model, type
of mirror, or if the method requires the separate calibration of the
mirror and the camera.

Since the amount of calibration methods is considerable, the
selection of a particular calibration method seems to be difficult
and even more so if we consider the problems involved in the
implementation process. Among all approaches mentioned previ-
ously, there is a group of calibration methods for omnidirectional
systems (catadioptric and fish-eye) available online as OpenSource
toolboxes. These methods can save time and effort when the goal is
beyond the calibration itself and when the user is more interested
in obtaining 3D motion and structure results than to deal with
complex projection models. In this work, we evaluate these meth-
ods and provide an analysis with simulations and real images.
Moreover, we use a Structure from Motion application with two
omnidirectional images, where we become users of the calibra-
tions provided by these approaches. This experiment shows the
behavior of the approaches in a real scenario. Besides the perfor-
mance, we also consider the ergonomics and ease of usage, as well
as the type of features, the algorithm and the type of pattern, since
they are important elements that can help the user to select the
best approach. Moreover we present an up-to-date list of the cali-
bration methods developed that consider catadioptric and fish-eye
systems, allowing the reader to decide to implement a different
method. These calibration methods are:

1. Mei and Rives [16]" which uses the sphere camera model and
requires several images of a 2D pattern. We will call this
approach Sphere-2DPattern.

2. Puig et al. [20]? which obtains a solution in closed form requiring
a set of 3D-2D correspondences. It also uses the sphere camera
model. We call this approach DLT-like.

3. Barreto and Araujo [25]° uses also the sphere camera model and
requires a single omnidirectional image containing a minimum of
three lines. We call it Sphere-Lines.

4. Scaramuzza et al. [15]* which models the omnidirectional
images as distorted images where the parameters of distortion
have to be found. We call this approach Distortion-2DPattern.

This paper is divided as follows. In Section 2 we present a re-
view of the existing calibration methods up to now, doing a classi-
fication based on the main entity required by the approaches to
calibrate the omnidirectional systems. Section 3 explains the
sphere camera model, which is used by three of the methods in this
comparison. Section 4 briefly presents the four methods enunci-
ated above. In Section 5 experiments are performed and com-
mented. Finally Section 6 enunciates the conclusions.

http://www.robots.ox.ac.uk/cmei/Toolbox.html.
http://webdiis.unizar.es/lpuig/DLTOmniCalibration.
http://www.isr.uc.pt/jpbar/CatPack/main.htm.
http://asl.epfl.ch/scaramuz/research/Davide_Scaramuzza_files/Research/
OcamCalib_Tutorial.htm.
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Classification of the calibration methods for omnidirectional systems. W = whole system. S = separate calibration (1. camera and 2. mirror parameters). *They use the same

approach [40].

Method Pattern/entity Number of views Model Mirror W/s
Kang [32] 10 Point tracks Multiple Particular Central Catadioptric Parabolic w
Svoboda and Pajdla [3] - Single Particular central catadioptric Generic S
Caglioti et al. [30] 1 Line + mirror contours Single Part. non-central catadioptric Generic w
Aliaga [38] 3D known points Multiple Part. non-central catadioptric Parabolic w
Toepfer and Ehlgen [22] 3D pattern/2D pattern (multiple points) Single/multiple Particular central catadioptric Hyperbolic & Parabolic w
Geyer and Daniilidis [23] 3 Lines Single Sphere Parabolic w
Geyer and Daniilidis [24] 2 Vanishing points Single Sphere Parabolic W
Barreto and Araujo [26] 3 Lines Single Sphere Generic w
Ying and Hu [7] 2 Lines/3 spheres Single Sphere Generic w
Ying and Zha [27] 3 Lines Single Sphere Generic w
Vandeportaele et al. [28] 3 Lines Single Sphere Parabolic w
Wu et al. [29] Lines Single Sphere Parabolic w
Wau et al. [31] 3 Lines Single Sphere Generic w
Vasseur and Mouaddib [37] lines (minimum no. n/a) Single Sphere Generic w
Mei and Rives [16] 2D pattern (multiple points) Multiple Sphere Generic w
Puig et al. [20] 3D pattern (20 3D-2D correspondences) Single Sphere Generic w
Deng et al. [17] 2D pattern (multiple points) Multiple Sphere Generic w
Gasparini et al. [19] 2D pattern (multiple points) Multiple Sphere Generic w
Wu and Hu [39] 4 Correspondences Multiple Sphere Generic w
Scaramuzza et al. [15] 2D pattern (multiple points) Multiple Distortion Generic w
Frank et al. [18] 2D pattern (multiple points) Multiple Distortion Generic w
Micusik and Pajdla [33] 9 Correspondences (epipolar geometry) Multiple Distortion Generic w
Morel and Fofi [14] 3 Polarized images Multiple Generic Camera* Generic S
Ramalingam et al. [34] 2 Rotational & Translational Flows Multiple Generic Camera* Generic w
Espuny and Burgos Gil [35] 2 Rotational Flows Multiple Generic Camera* Generic w

2. Classification of the calibration methods for omnidirectional
systems

As observed above there exist many calibration methods. They
use different techniques and models to calibrate the omnidirec-
tional systems. Some of them first calibrate the perspective camera
and after that find the mirror parameters. In this section we pres-
ent a review and classification of existing calibration methods. We
propose five categories based on the main entity required to per-
form the calibration of the systems.

e Line-based calibration. Many methods are based on the projec-
tion of lines in the omnidirectional images. The main advantage
of using lines is that they are present in many environments and
a special pattern is not needed. These approaches compute the
image of the absolute conic from which they compute the
intrinsic parameters of the catadioptric system. Geyer and Dani-
ilidis [23] calibrate para-catadioptric cameras from the images
of only three lines. Barreto and Araujo [26] study the geometric
properties of line images under the central catadioptric model.
They give a calibration method suitable for any kind of central
catadioptric system. Ying and Hu [7] analyze the relation of
the camera intrinsic parameters and imaged sphere contours.
They use the projection of lines as well as projections of the
sphere. The former gives three invariants and the latter two.
Ying and Zha [27] show that all line images from a catadioptric
camera must belong to a family of conics which is called a line
image family related to certain intrinsic parameters. They pres-
ent a Hough transform for line image detection which ensures
that all detected conics must belong to a line image family
related to certain intrinsic parameters. Vandeportaele et al.
[28] slightly improves [23] using a geometric distance instead
of an algebraic one and they allow to deal with lines that are
projected to straight lines or to circular arcs in a unified manner.
Wu et al. [29] introduce a shift from the central catadioptric
model to the pinhole model from which they establish linear
constraints on the intrinsic parameters. Without conic fitting
they are able to calibrate para-catadioptric-like cameras. Cagli-
oti et al. [30] calibrate a system where the perspective camera is

placed in a generic position with respect to a mirror, i.e., a non-
central system. They use the image of one generic space line,
from which they derive some constraints that, combined with
the harmonic homology relating the apparent contours of the
mirror allow them to calibrate the catadioptric system. More
recently Wu et al. [31] derive the relation between the projec-
tion on the viewing sphere of a space point and its catadioptric
image. From this relation they establish linear constraints that
are used to calibrate any central catadioptric camera. Vasseur
and Mouaddib [37] detect lines in the 3D scene which are later
used to calculate the intrinsic parameters. This approach is valid
for any central catadioptric system.

2D pattern calibration. This kind of methods use a 2D calibration
pattern with control points. These control points can be corners,
dots, or any features that can be easily extracted from the
images. Using iterative methods extrinsic and intrinsic parame-
ters can be recovered. Scaramuzza et al. [15] propose a tech-
nique to calibrate single viewpoint omnidirectional cameras.
They assume that the image projection function can be
described by a Taylor series expansion whose coefficients are
estimated by solving a two-step least squares linear minimiza-
tion problem. Mei and Rives [16] propose as Scaramuzza a flex-
ible approach to calibrate single viewpoint sensors from planar
grids, but based on an exact theoretical projection function -the
sphere model- to which some additional radial and tangential
distortion parameters are added to consider real-world errors.
Deng et al. [17] use the bounding ellipse of the catadioptric
image and the field of view (FOV) to obtain the intrinsic param-
eters. Then, they use the relation between the central catadiop-
tric and the pinhole model to compute the extrinsic parameters.
Gasparini et al. [19] compute the image of the absolute conic
(IAC) from at least 3 homographies which are computed from
images of planar grids. The intrinsic parameters of the central
catadioptric systems are recovered from the IAC.

3D Point-based calibration. These methods require the position
of 3D points observed usually in a single image. Aliaga [38] pro-
poses an approach to estimate camera intrinsic and extrinsic
parameters, where the mirror center must be manually deter-
mined. This approach only works for para-catadioptric systems.
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Wu and Hu [39] introduced the invariants of 1D/2D/3D space
points and use them to compute the camera principal point
with a quasi-linear method. Puig et al. [20] present an approach
based on the Direct Linear Transformation (DLT) using lifted
coordinates to calibrate any central catadioptric camera. It com-
putes a generic projection matrix valid for any central catadiop-
tric system. From this matrix the intrinsic and extrinsic
parameters are extracted in a closed form and refined by non-
linear optimization afterwards. This approach requires a single
omnidirectional image containing points spread in at least three
different planes.

e Self-calibration. This kind of calibration techniques uses only
point correspondences in multiple views, without needing to
know either the 3D location of the points or the camera loca-
tions. Kang [32] uses the consistency of pairwise tracked point
features for calibration. The method is only suitable for para-
catadioptric systems. Micusik and Pajdla [33] propose a method
valid for fish-eye lenses and catadioptric systems. They show
that epipolar geometry of these systems can be estimated from
a small number of correspondences. They propose to use a
robust estimation approach to estimate the image projection
model, the epipolar geometry and to avoid outliers. Ramalin-
gam et al. [34] use pure translations and rotations and the
image matches to calibrate central cameras from geometric
constraints on the projection rays. Espuny and Burgos Gil [35]
developed a similar approach that uses two dense rotational
flows produced by rotations of the camera about two unknown
linearly independent axes which pass through the projection
center.

e Polarization imaging. This method is proposed by Morel and Fofi
[14]. It is based on an accurate reconstruction of the mirror by
means of polarization imaging. It uses a very simple camera
model which allows them to deal with any type of camera.
However they observe that developing an efficient and easy-
to-use calibration method is not trivial.

3. Sphere camera model

As many of the calibration methods are based on the sphere
camera model [5,6], we explain this model here, and later we show
the modifications added in each approach.

All central catadioptric cameras can be modeled by a unit
sphere and a perspective camera, such that the projection of 3D
points can be performed in two steps (Fig. 1). First, one projects
the point onto the sphere, to the intersection of the sphere and
the line joining its center and the 3D point. There are two such
intersection points, r.. These points are then projected into a nor-
malized plane 7, resulting in two points, q.. Finally these points
are projected into the perspective plane 7, giving again two points
X, one of which is physically true. This model covers all central
catadioptric cameras, encoded by ¢&, which is the distance between
the perspective camera and the center of the sphere and v the dis-
tance between the image plane and the projection center. ¢ = 0 for
perspective, ¢ =1 for para-catadioptric, 0 < ¢ <1 for hyper-catadi-
optric. This parameter can be computed based on the mirror infor-
mation. Let the unit sphere be located at the origin and the optical
center of the perspective camera, at the point C,=(0,0,—¢)". The
perspective camera is modeled by the projection matrix P ~ AyR,
(I — Cp), where A, is its calibration matrix. The rotation R, denotes
a rotation of the perspective camera looking at the mirror. Since
both intrinsic and extrinsic parameters of the perspective camera
are intrinsic parameters for the catadioptric camera, we replace
AR, by a generic projective transformation Hc. Note that the focal
length of the sphere model is a value determined by the actual
camera focal length and the mirror shape parameters (&,1/) which
are computed from the mirror parameters [26,16]. The intrinsic

Fig. 1. Projection of a 3D point in the image plane using the sphere camera model.

parameters of the catadioptric camera are thus ¢ and H., where
H. is defined as

Y —¢ 0 0
Ho=AR, | 0 &—y 0 )
0 0 1
Mc

Observe the change of the sign in the elements of the diagonal of M.
This encodes the mirror effect which causes a flip on the omnidirec-
tional image. Mei and Rives [16] just take into account the differ-
ence ¢ — and call it », so the flip is not considered in that
model. Following that, (2) encodes this two projections (x.) and
its corresponding inverse function is (3), which maps an image
point X to an oriented 3D ray X.

X
X, =h(X) = Y (2)

Z+EVX2+Y?+ 72

FV1+0-2)624y2)

X+y?+1

RV 3)

X2 4y2+1

& 2\ (y2_ 2
FVI1+(1-)(x +J’);£

x2+y2 41 >

h'(x) =

Some authors [26,16] just take into account the positive projection
given by function hbut some others [41,42] use lifted coordinates to
deal with the non-linearities present in function h. The vector lifting
consists in mapping a 3-vector X = (x1,X»,X3) in the projective space
©? to a 6-vector X in the projective space ¢ and performed by the
following equation

N T
X = (X2 X1X; X3 X1X3 X2X3 X3) (4)

Lifted matrices are also used to compute the generic catadioptric
projection matrix. Two different ways to compute this lifting can
be found in [21,41].
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Fig. 2. Synthetical images used by the calibration methods. Sphere-2DPattern and Distortion-2DPattern approaches use five images similar to (a) and (b). (c) DLT-like
approach uses a single image containing 5 planar patterns. (d) Sphere-lines approach use 4 image lines.
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Fig. 3. Reprojection error in pixels as a function of noise (o) corresponding to the hypercatadioptric system.
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Fig. 4. Reprojection error in pixels as a function of noise (o) corresponding to the paracatadioptric system.

4. Calibration methods analyzed 4.1. Sphere-2DPattern approach
In this section we summarize the four OpenSource methods This approach [16] uses the sphere model explained in the last
used to calibrate omnidirectional systems. The purpose of this sec- section, with the difference that it does not consider the image flip

tion is to show a general view of the methods that help the reader ~ induced by (y — &), it uses (¢ — ) in x and y coordinates. This ap-
to understand the core of each method. proach adds to this model distortion parameters to consider real
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Fig. 5. (a) 3D pattern. (b) SfM configuration to test the calibrations.

world errors. This method is multiview, which means that it re-
quires several images of the same pattern containing as many
points as possible. This method needs the user to provide prior
information to initialize the principal point and the focal length
of the catadioptric system. The principal point is computed from
the mirror center and the mirror inner border. The focal length is
computed from three or more collinear non-radial points. Once
all the intrinsic and extrinsic parameters are initialized a non-lin-
ear process is performed. This approach is also valid for fish-eye
lenses and spherical mirrors.

This approach uses a total of 17 parameters to relate a scene
point to its projection in the image plane:

e Seven extrinsic parameters (q,t) representing the relation
between the camera reference system and the world reference
system. A 4-vector q represents the rotation as a quaternion
and a 3-vector t represents the translation.

e One mirror parameter ¢&.

e Four distortion parameters Dist = [ky, ko, p1, p2], two for tangen-
tial distortion and two for radial distortion [43].

e Five parameters representing a generalized camera projection
P=1[6,71,72,Uo, ¥o)- (y1,72) are the focal lengths of the catadiop-
tric system for x and y axis, 0 is the skew parameter, and
(uo, 1) is the principal point.

The 2D pattern used to calibrate the camera is composed of m
points X; with their associated image values x;. The solution of
the calibration problem is obtained by minimizing the reprojection
error using the Levenberg-Marquardt algorithm.

4.2. Sphere-lines approach

__ This method [26] is based on computing the absolute conic
Q. = H;"H_' and the mirror parameter ¢ under the sphere camera

Fig. 6. Some images used to calibrate the hyper-catadioptric system. (a) Sphere-Lines. (b) DLT-like approach. (c and d) Sphere-2DPattern and Distortion-2DPattern

approaches.
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Fig. 7. Images used in the SfM experiment with reprojected points superimposed (hyper-catadioptric).

Table 2
Comparison of the physical parameters given by the 3 methods based on the sphere
model.

S (u0,20)
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Fig. 9. Number of reprojected points within an error distance in pixels using a
hyper-catadioptric system.

Table 3

Reprojection error from different sources corresponding to the hypercatadioptric
system. *Since the sphere-lines does not use the reprojection error we take it from
simulations with Gaussian noise o = 1pixel.

Sphere-2DPattern 0.9684 (513.93,400.76)
Sphere-lines 1.0215 (523.82,416.29)
DLT-like 0.9868 (509.95,398.54)
I DL T-like
{ Sphere-2DPattern  H
[ Distortion-2DPattern
| Sphere-Lines il
2 3 4 5

millimeters{mm)

Fig. 8. Number of reconstructed 3D points within an error distance in millimeters
using a hyper-catadioptric system.

model. In omnidirectional images 3D lines are mapped to conics.
So the first step is to fit these conics. With the information pro-
vided by these conics and the location of the principal point an
intermediate step is performed. It computes entities like polar
lines, lines at infinity and circle points. From these intermediate
entities and some invariant properties like collinearity, incidence
and cross-ratio the mirror parameter ¢ is computed. From the im-
age of a conic in the omnidirectional images it is possible to com-
pute two points that lie on the image of the absolute conic. Since a
conic is defined by a minimum of 5 points at least three conic
images are required to obtain Q... Once the image of the absolute
conic Q.. is computed, from its Cholesky decomposition we obtain

Y B G
He=10 7 ¢ (5)
0 0 1

with the intrinsic parameters y, and y, (focal lengths), skew () and
principal point (cx,cy).

Method Original paper Calibration Structure from motion
Sphere-2DPattern 0.40 0.00005 0.34
Sphere-Lines n/a 1.11* 1.19
DLT-Like 0.30 0.47 0.40
Distortion-2DPattern 1.2 0.82 0.45

4.3. DLT-like approach

This approach [20] also uses the sphere camera model. To deal
with the non-linearities present in this model, the lifting of vectors
and matrices is used. This method computes a lifted 6 x 10 projec-
tion matrix that is valid for all single-viewpoint catadioptric cam-
eras. The required input for this method is a single image with a
minimum of 20 3D-2D correspondences distributed in 3 different
planes.

In this approach a 3D point X is mathematically projected to
two image points X., X_, which are represented in a single entity
via a degenerate dual conic Q2. The relation between them is
Q~x XT +x X,

This conic represented as a 6-vector ¢ = (¢, C»,C3,C4,C5,Cg)' Pro-
jected on the omnidirectional image is computed using the lifted
3D point coordinates, intrinsic and extrinsic parameters as:
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Fig. 10. Some images used to calibrate the fish-eye system. (a) Sphere-lines. (b) DLT-like approach. (c and d) Sphere-2DPattern and Distortion-2DPattern approaches.

Fig. 11. Images used in the SfM experiment with reprojected points superimposed (fish-eye).

€~ AeeX:Ro6(T 6 Toua)Xio (6)

where R represents the rotation of the catadioptric camera. X; a
6 x 6 matrix and Tg,4 depend only on the sphere model parameter
¢ and position of the catadioptric camera C = (t,,t,t;) respectively.
Thus, a 6 x 10 catadioptric projection matriX, Pgq, iS expressed
by its intrinsic Acgq and extrinsic Teqq parameters

Peata = HeX: Revo(T6 Toxa) (7)
N~ —
Acﬂ[a TCU[E

This matrix is computed from a minimum of 20 3D-2D lifted corre-
spondences in a similar way to the perspective case [44] using least
squares

(P © X)Peas = 06 ®)

The 60-vector peqq contains the 60 coefficients of Py, Manipulat-
ing this matrix algebraically the intrinsic and extrinsic parameters
are extracted. These extracted values are used as an initialization
to perform a non-linear process (Levenberg-Marquardt). In this
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Fig. 12. Number of reconstructed 3D points within an error distance in millimeters
using a fish-eye lens.

I DL T-like
. Sphere-2DPattern
I Distortion-2DPattern

. L i —
0.25 0.50 0.75 1 1.25 1.50 1.75 2
pixels

Fig. 13. Number of reprojected points within an error distance in pixels using a
fish-eye lens.

process some parameters that are not included in the sphere cam-
era model are added. These parameters are, as in Sphere-2DPattern
approach, the radial and tangential distortion which are initialized
to zero. This approach uses two parameters for each type of distor-
tion. The minimization criterion is the root mean square (RMS) of
distance error between a measured image point and its reprojected
correspondence.

4.4, Distortion-2DPattern approach

In this approach [15] the projection model is different from the
one previously presented. The only assumption is that the image
projection function can be described by a polynomial, based on
Taylor series expansion, whose coefficients are estimated by solv-
ing a two-step least squares linear minimization problem. It does
not require either any a priori knowledge of the motion or a spe-
cific model of the omnidirectional sensor. So, this approach as-
sumes that the omnidirectional image is in general a highly

distorted image and we have to compute the distortion parameters
to obtain such a distorted image. This approach, like Sphere-2DPat-
tern, requires several images from different unknown positions of a
2D pattern. The accuracy depends on the number of images used
and on the degree of the polynomial.

Under this model a point in the camera plane x’ = [x,y']", is re-
lated to a vector p which represents a ray emanating from the
viewpoint O (located at the focus of the mirror) to the scene point
X. This relation is encoded in the function g

p=g(X)=PX (9)

where X € ®* is expressed in homogeneous coordinates; P € %3** is
a perspective projection matrix. The function g has the following
form

g(X) = (. y.f(x.y)", (10)
and f is defined as
fX.y)=a0+ap +ap?+.. +ap" (11)

where p’ is the Euclidean distance between the image center and
the point. In order to calibrate the omnidirectional camera the
n+ 1 parameters (aop,d;,d,,...,d,) corresponding to the coefficients
of function f need to be estimated.

The camera calibration under this approach is performed in two
steps. The first step computes the extrinsic parameters, i.e., the
relation between each location of the planar pattern and the sensor
coordinate system. Each point on the pattern gives three homoge-
neous equations. Only one of them is linear and it is used to com-
pute the extrinsic parameters. In the second step, the intrinsic
parameters are estimated, using the extrinsic parameters previ-
ously computed and the other two equations. The authors do not
mention it, but after this linear process a non-linear optimization
is performed using the Gauss—Newton algorithm.’

5. Experiments

In order to compare the different calibration methods we cali-
brate a hyper-catadioptric system®, a fish-eye and a commercial
proprietary shape mirror,” which we name unknown-shape system.
Additionally, we displace the perspective camera of the hyper-cata-
dioptric system far from the mirror. This allows the displacement of
the optical center of the perspective camera from the other focus de-
scribed by the hyperbolic mirror, leading to a non-central system.
We calibrate these four systems with the four methods and compare
the results with a reconstruction experiment which is explained in
Section 5.1. The set up used to calibrate the omnidirectional system
for every method is explained as follows.

Sphere-2DPattern approach. This approach requires images of a
single 2D pattern. These images have to cover most of the omnidi-
rectional image area. This approach asks the user for the image
center and for the outer mirror border to compute the principal
point. Then it asks for four aligned edge points on a non-radial line
to compute the focal length. With this information it asks for the
four corner points of the pattern and uses a subpixel technique
to extract the rest of the points present in the pattern. If the focal
length is not well estimated then all points have to be given
manually.

DLT-like approach. In the DLT-like approach a single image of a
3D pattern was used. This approach does not have an automatic
extractor so all points are given manually. This method requires

5 This algorithm is provided by the Isqnonlin Matlab function.
5 Neovision H3S with XCD-X710 SONY camera
7 http://www.0-360.com.
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Fig. 14. Some images used to calibrate the unknown-shape catadioptric system. (a) Sphere-Lines. (b) DLT-like approach. (c and d) Sphere-2DPattern and distortion-2DPattern

approaches.

Fig. 15. Images used in the SfM experiment with reprojected points superimposed (unknown-shape).

as input a set of points lying on at least three different planes with
known relative position.

Distortion-2D approach. This approach also uses images coming
from a 2D pattern. The last version of this method has an automatic
corner detector which detects most of the corners present in a sin-
gle pattern. The amount of corners given manually is minimum.
Once all the points in all the images are given the calibration pro-
cess starts.

Sphere-Lines approach. This approach is based on the projections
of lines in the omnidirectional images. This method only requires
one omnidirectional image containing at least three lines.

5.1. Evaluation criteria

Previous to the comparison of the real system we perform an
experiment using simulated data. The purpose of this experiment
is to observe the behavior of all approaches under optimal condi-
tions and to measure their sensitivity to noise. We simulate two
central catadioptric systems, a hypercatadioptric® with mirror
parameter ¢ = 0.7054 and a paracatadioptric system. Firstly, we gen-

8 http://www.accowle.com.
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Fig. 16. Number of reconstructed 3D points within an error distance in millimeters
using an unknown-shape system.
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Fig. 17. Number of reprojected points within an error distance in pixels using an
unknown-shape system.

erate five synthetic images, each one containing a calibration pat-
tern, that cover the whole FOV of the omnidirectional image, two
of these images are shown in Fig. 2a and 2b. These images are used
by the Sphere-2DPattern and the Distortion-2D approaches. We
combine the five calibration patterns in a single image (Fig. 2c) that
is used by the DLT-Like approach. These three approaches use the
same points. In the case of the Sphere-Lines approach four lines
are present in a single image with a total of 904 points (Fig. 2d).
We add Gaussian noise to the image coordinates. For every noise le-
vel ¢ (in pixels) we repeat the experiment 100 times in order to
avoid particular cases due to random noise. In Figs. 3 and 4 we show
the mean and the standard deviation of the reprojection error corre-
sponding to the hypercatadioptric and the paracatadioptric systems,
respectively for the analyzed approaches.

As we observe the behavior of the four approaches is quite sim-
ilar. All of them respond in the same way to the amount of noise
present in the images. This experiment shows that under optimal
circumstances the performance of the four approaches is quite
similar. One thing we observe with respect to the Sphere-Lines ap-

proach is that four lines are enough to compute the calibration. We
try to calibrate the systems by using a higher number of lines. This
caused the approach to become slower and in some occasions not
to converge at all. This behavior is due to the lines containing a
high number of points, therefore increasing 2 or more lines means
to increase hundreds of points.

We observe that the reprojection error is not sufficient to decide
which method is endowed with the best performance, however it
is a necessary condition to qualify an algorithm as performing well.
Moreover, a disadvantage of this error measure is that we can
make it smaller by just adding more parameters to a model. As
an example we can observe the reprojection error of the hypercata-
dioptric system given by the Sphere-2DPattern approach (see
Table 3). The obtained reprojection error during calibration was
considerably small, only 0.000005 pixels, which could be consid-
ered as zero. This approach adds five distortion parameters: three
for radial distortion and two for tangential distortion. Originally,
these parameters are not considered in the model. To verify the im-
pact of these parameters in the calibration we repeated the calibra-
tion. When we only consider radial distortion (3 parameters), the
reprojection error increased to 0.42 pixels. When no distortion is
considered at all, the reprojection error increased to 0.64 pixels.
As previously stated, the reprojection error is not definitive in
showing which approach performs the best.

Instead of the reprojection error we choose to consider a Struc-
ture from Motion task from two calibrated omnidirectional images
of a 3D pattern (Fig. 5a) built in our lab. The pattern has been mea-
sured with high accuracy using photogrammetric software.® Thus,
a 3D reconstruction by bundle adjustment has been made. We used
6 convergent views taken with a calibrated high-resolution camera
(Canon EOS 5D with 12.8Mpix.). The estimated accuracy of the loca-
tion of the 3D points is better than 0.1mm. Fig. 5b shows the config-
uration used for the SfM experiment. Using the calibration provided
by each method we compute the corresponding 3D rays from each
omnidirectional image. The correspondences between the two
images were given manually. We use these correspondences to com-
pute the essential matrix E which relates them. From this matrix we
compute two projection matrices P; = [1|0] and P, = [R|t]. Then, with
these projection matrices and the 3D rays we compute an initial 3D
reconstruction using a linear triangulation method [44] which is la-
ter refined by a bundle adjustment optimization process. The 3D
reconstruction depends on the number of correspondences. We
use a set of 144 points to compute the reprojection error and to eval-
uate the 3D reconstruction results. We choose two different criteria
to measure the accuracy of each model. These criteria are:

e The average error between the real 3D points and their
estimations.

e The reprojection error. We project the ground truth 3D pattern
in the two cameras with the locations given by the SfM algo-
rithm. We measure the error in pixels between the image points
and the ground truth reprojection.

5.2. Hyper-catadioptric system

The hyper-catadioptric system is composed by a perspective
camera with a resolution of 1024 x 768 and a hyperbolic mirror
having a 60 mm diameter and parameters a=281 mm and
b =234 mm according to manufacturer information. The mirror
parameter for the sphere camera model is ¢ = 0.9662. In Fig. 6 we
observe some of the images used to calibrate this system. We
use one image to calibrate the system using the Sphere-Lines and
the DLT-like approaches. Eleven images of the 2D pattern were

9 PhotoModeler software was used.
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Fig. 18. Some images used to calibrate the non-central catadioptric system. (a) Sphere-Lines. (b) DLT-like approach. (¢ and d) Sphere-2DPattern and Distortion-2DPattern

approaches.

Fig. 19. Images used in the SfM experiment with reprojected points superimposed (non-central hyper-catadioptric).

Table 4
Comparison of the physical parameters given by the 3 methods based on the sphere
model in the non-central system.

4 (uo, v0)
0.9662 (511.88,399.25)

Ground Truth

Sphere-2DPattern 0.8463 (519.14,407.87)
Sphere-Lines 1.00 (537.50,409.82)
DLT-like 0.8819 (525.05,411.89)

used to calibrate the system using both Sphere-2DPattern and Dis-
tortion-2D approaches. In Fig. 7 we show the images used in the
SfM experiment.

5.2.1. Mirror parameter and principal point

Three of these methods are based on the sphere camera model.
In Table 2 we present the estimations of the principal point (uy, 2p)
and the mirror parameter ¢ since they are related with sphere
model parameters. The Distortion-2DPattern approach does not of-
fer information about the catadioptric system. As we can see, the
best estimation of the mirror parameter is given by Sphere-2DPat-
tern but also the DLT-like algorithm gives a good approximation.
Sphere-Lines gives a value bigger than 1 which does not corre-
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Fig. 20. Number of reconstructed 3D points within an error distance in millimeters
using a non-central hyper-catadioptric system.
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Fig. 21. Number of reprojected points within an error distance in pixels using a
non-central hyper-catadioptric system.

spond to a hyperbolic mirror. With respect to the principal point
the estimation of Sphere-2DPattern and DLT-like are close to the
real one. The difference is that the Sphere-2DPattern method asks
the user to give the image center and the rim of the mirror to com-
pute the principal point and the DLT-like algorithm does not need
any of this a priori information but requires known positions of the
3 planes in the pattern.

In Fig. 8 we show the histogram corresponding to the accuracy
in millimeters of the 144 reconstructed 3D points. We observe that
the Sphere-2DPattern approach has the highest number of recon-
structed points closer to the ground truth. The highest error corre-
sponds to Sphere-Lines and Distortion-2DPattern with one point
5 mm far from the ground truth. In Fig. 9 we show the reprojection
error of the 288 points of the two images used in the experiment.
We observe that all the approaches are below the 2 pixel error and
three of them within the 1 pixel error.

The hypercatadioptric system is the more complex catadioptric
system under the sphere camera model since the mirror parameter
& 1is in the interval ]0,1[. In opposition, the paracatadioptric system
where ¢ =1 simplifies considerably the model. In this context we
decide to present the reprojection error corresponding to this sys-
tem from three different sources (see Table 3): the reprojection er-
ror shown in the original paper where the approach was firstly
presented (first column), the reprojection error obtained when
we calibrate the system, and the reprojection error from the Struc-
ture from Motion experiment. This information provides the reader
with a clear idea about the performance of all approaches under
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Fig. 23. 3D reconstruction error in millimeters. The horizontal axis represents the
different radii r.
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Fig. 24. Reprojection error in pixels. The horizontal axis represents the different
radii r.

different circumstances and allows us to observe that the reprojec-
tion error given at the calibration time is less informative that the
reprojection error of a Structure from Motion experiment where
the calibration is an early step and all the approaches are under
the same circumstances.

(b)

Fig. 22. Points contained inside the areas described by (a) r = 150 pixels and (b) r = 400 pixels.
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Fig. 26. 3D reconstruction error in millimeters. The horizontal axis represents the
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Fig. 27. Reprojection error in pixels. The horizontal axis represents the different
radii r.

5.3. Fish-eye lens

The fish-eye lens used in this experiment is a Raynox DCR-
CF185PRO with a FOV of 185° on all directions. It is mounted on
a high-resolution camera. In Fig. 10 we show some of the images
used to calibrate this system. We use 8 images to perform the cal-

(b)

Fig. 25. Points contained inside the areas described by (a) r= 300 pixels and (b) r = 400 pixels.

ibration with the Sphere-2DPattern and Distortion-2DPattern ap-
proaches and only one image using the DLT-like approach. We
use the image of 7 lines to perform the calibration with the
Sphere-Lines approach. Since none of the methods provides any
information about the system we just show the results obtained
from the SfM experiment. The images used in this experiment
are shown in Fig. 11.

In Figs. 12 and 13 we show the results of this experiment. We
observe that the methods that claim to be able to calibrate the
non-central fish eye systems indeed give good results. This is the
case of the Sphere-2DPattern, DLT-like and the Distortion-2DPat-
tern approaches. The opposite case is the Sphere-Lines approach
which is not able to correctly calibrate this camera. It gives repro-
jection errors close to one hundred pixels. We observe that the
three valid approaches give similar results. The DLT-like gives the
best results with the highest number of reconstructed points with-
in 1 mm error, although it is not designed to handle fish-eye lenses.
With respect to the reprojection error, we observe a similar behav-
ior of the three approaches with a maximum error of 2 pixels.

5.4. Unknown-shape catadioptric system

This system is the combination of a commercial proprietary
shape mirror and a high-resolution camera. We use 6 images of a
2D pattern to calibrate this system for the Sphere-2DPattern and
Distortion-2DPattern approaches. We use an image with 4 lines
to perform the calibration with the Sphere-Lines approach. We ob-
served several difficulties when more than 4 lines were used to cal-
ibrate the system using the Sphere-Lines approach. Sometimes the
calibration results contained complex numbers or there were prob-
lems of convergence. In Fig. 14 we observe some of the images
used to calibrate this system under all the analyzed approaches.
In Fig. 15 we show the images used to perform the SfM experiment.

We decided to use a more complex reconstruction scenario to
observe the behavior of the approaches under these conditions
(Fig. 15a and 15b). The results of the experiments, the 3D accuracy
and the reprojection error are shown in Figs. 16 and 17, respec-
tively. We observe that the Distortion-2DPattern approach has
the highest number of points within the 5 mm error, 131 out of
144. The worst performance is given by the Sphere-Lines approach
with maximum errors of 35 mm. The other two approaches show
similar performance, with the majority of the reconstructed 3D
points within the 10 mm error. The lowest reprojection error is gi-
ven by the Distortion-2DPattern with all the points within the 1
pixel error and the other three approaches have a similar behavior
with the majority of the reprojected points within the 3 pixel error.

5.5. Non-central hyper-catadioptric system

This system is the one described in the hyper-catadioptric
experiment. The only difference is that the perspective camera is
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Fig. 28. Points contained inside the areas described by (a) r = 230 pixels and (b) r = 300 pixels.
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Fig. 29. 3D reconstruction error in millimeters. The horizontal axis represents the
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Fig. 30. Reprojection error in pixels. The horizontal axis represents the different
radii r.

displaced as far as possible from the mirror. This causes that the
optical center of the perspective camera is not located at the other
focus of the hyperbolic mirror, which is the basic condition for this
system to be central. Some of the images used to perform the cal-
ibration of this system under the different models are shown in

Fig. 18. The corresponding images for the SfM experiment are
shown in Fig. 19. As in the hyper-catadioptric case we compute
the mirror parameter and the principal point. This result is shown
in Table 4. We observe that DLT-like and Sphere-2DPattern give
similar mirror hyperbolic parameter and Sphere-Lines estimates
a parabolic mirror with ¢=1.

The 3D error and the reprojection error are shown in Figs. 20
and 21, respectively. We observe that all the approaches have a
similar behavior even with a non-central system. The Sphere-
2DPattern has all its reconstructed 3D points within the 3 pixel er-
ror. The DLT-like and Distortion-2DPattern approaches show simi-
lar results with one 3D reconstruction error within the 5 mm error.
The worst result is given by the Sphere-Lines approach with max-
imum reconstruction error of 8 mm. We observe that the reprojec-
tion error for all the methods is below 2 pixels.

5.6. Distribution of the calibration points in the catadioptric image

The accuracy of the computed calibration relies on the area
occupied by the calibration points in the calibration images. In this
experiment we show the importance of the distribution of the cal-
ibration points inside the catadioptric images. We define the area
to be used by selecting those points closer than r pixels from the
image center. The system to calibrate is a central hyper-catadiop-
tric system. Since the images used by each approach are not the
same, and also the approaches use different features (points and
lines), a full comparison using the same distances for all the ap-
proaches is not possible. Since the approaches Distortion-2DPat-
tern and Sphere-2DPattern share the calibration images set we
present their corresponding results together. In the case of DLT-
like and Sphere-2DPattern the results are shown separately. The
radii r were chosen depending on the requirements of each ap-
proach to calibrate the catadioptric system.

5.6.1. Distortion-2DPattern and Sphere-2DPattern

These two approaches require several images to perform the
calibration. We select the calibration points that lie closer than r
pixels from the image center in all the images of the set in which
these points exist. An example for two different radii r can be ob-
served in Fig. 22. In Fig. 23 we show the mean of the reconstruction
error for each calibration performed with the points within the
areas described by the radii r. We observe that both approaches
give similar results. When the area is small, the number of points
decreases and the estimation is worse. The Distortion-2DPattern
has an error of 4 mm and the Sphere-2DPattern 2 mm in the worst
case. This behavior can be explained by the fact that Sphere-2DPat-
tern estimates the image center from data given by the user and
the Distortion-2DPattern does it automatically, depending more
on the distribution of the points. In Fig. 24 we show that reprojec-
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Fig. 31. Different configurations tested to calibrate the central catadioptric systems using the Sphere-Lines approach. (a) Unknown-shape system, (b) Fish-eye lens and (c) a

combination of two images to cover the whole omnidirectional image with lines.

tion error that is under 1 pixel error for both approaches, even with
the smallest r.

5.6.2. DLT-like

Since the DLT-like approach only requires one single image, the
points are selected directly using different radii r. In Fig. 25 we
show two examples of the points selected for two different radii.
In Figs. 26 and 27 we show the 3D reconstruction error and the
reprojection error, respectively. We observe a similar behavior to
the previous approaches using large radii. With small radii the re-
sults are worse, since with small radii only very few points of the
second and third planes are considered (see Fig. 25a).

5.6.3. Sphere-Lines

This approach also requires a single image. The image must con-
tain at least 3 line images. The radii limit the length of the lines
used to calibrate the system. An example can be observed in
Fig. 28. We particularly observed that this approach is quite sensi-
tive to the length and the position of the lines. We show the results
where the calibration was possible in the corresponding radii.
Figs. 29 and 30 show the 3D reconstruction error and the reprojec-
tion error, respectively. We observe a similar behavior to the other
approaches, but having a bigger error, both in the 3D reconstruc-
tion error and the reprojection error.

One may think that a comparison of this method using just a
few representative elements, in this case lines, present in one sin-
gle image, against others where hundreds of representative ele-
ments (2D points), are extracted from several images, might be
unfair. In this order we tried to calibrate the central catadioptric
systems using as many lines as possible, present in the same
images of the 3D pattern used to calibrate the system using the
other approaches. A few examples of the lines used are shown in
Fig. 31. The results calibrating the central catadioptric systems
using this method did not succeed. We obtained several types of
errors and sometimes convergence problems. Because of that we
calibrate the central catadioptric systems using the maximum
number of lines present in one single image, different from the
ones used by the other approaches.

5.7. Discussion

After all these experiments with different systems we observe
that all the approaches give good results, with the exception of
the Sphere-Lines approach with the fish-eye system, basically be-
cause this approach is not designed to deal with such systems. In
particular, for the fish-eye lens, the best calibration was achieved
with the DLT-like approach. In the case of the Unknown-shape
camera, the Distortion-2DPattern approach provided the best re-
sult. With respect to the non-central hyper-catadioptric, DLT-like,
Sphere-2DPattern and Distortion-2DPattern approaches all gave

similar accuracy. Finally, the hyper-catadioptric system was cali-
brated slightly better by both the DLT-like and the Sphere-2DPat-
tern approaches. We also analyze the importance of the area
occupied by the calibration elements (points, lines) in the calibra-
tion image(s). All approaches require this area to be as big as
possible to compute a good calibration. In the particular case of
the Sphere-Lines approach the lines must be as large as possible
and must intersect far from the image center. In terms of com-
puting performance, all these approaches perform a non-linear
step after the initialization of the intrinsic and extrinsic parame-
ters is computed. The DLT-like approach is the fastest since it
estimates less parameters. Next are the Sphere-2DPattern and
the Distortion-2DPattern with several extrinsic parameters corre-
sponding to each image to compute, plus the intrinsic parame-
ters. The slowest method is the Sphere-Lines approach, since it
uses a complex geometry to compute the self-polar triangle
and takes into account every single pixel contained in the line
images.

We also consider the importance on what we need to make
these methods to work and the problems observed at the calibra-
tion time.

e Sphere-2DPattern, Distortion-2DPattern. These two approaches
require multiple images of a 2D pattern to perform the calibra-
tion. Both of them have automatic corner extractors but most of
the times these do not work properly and the points have to be
given manually. This is the most tedious part since we have a
minimum of eight to ten images, each image containing 48
points giving a total of 384 ~ 480 points. Besides that the
Sphere-2DPattern approach requires the user to indicate the
image center and a minimum of three non-radial points to esti-
mate the focal length.

DLT-like. This approach does not require any prior informa-
tion but one single omnidirectional image containing 3D
points spread on three different planes. The inconvenient with
this method is to obtain the 3D points contained in the 3D
pattern. All the image points in the 3D pattern images are given
manually. We observed that depending on the image used the

P

mirror parameter ¢ is better or worse estimated.
Something similar happens with the Sphere-2DPattern
approach.

e Sphere-Lines. This approach requires the easiest setting to be
constructed. It only requires one single omnidirectional image
containing a minimum of 3 lines. One thing observed using
this approach is that it strongly depends on the principal
point estimation. If this estimation is not accurate enough
the calibration is not performed properly. Also we observe
some difficulties while calibrating the unknown shape catadi-
optric system. The number and the location of lines in the
image is important to correctly calibrate the system. Some-
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times using more than three lines we had convergence prob-
lems or we obtained calibrations containing non-real
solutions.

Notice that each method has its own manner to extract the
points from the images. In this order we should decouple the
matching process from the parameter estimation process.

6. Conclusions

In this paper we have presented a comparison of four methods
to calibrate omnidirectional cameras available as OpenSource. Two
of them require images of a 2D pattern, one requires images of
lines and the last one requires one image of a 3D pattern. Three
of these approaches use the sphere camera model. This model
can give some information about the mirror of the omnidirectional
system besides it provides a theoretical projection function. The
other approach is based on a distortion function. Both models
can deal with any central catadioptric system and fish-eyes. How-
ever the Sphere-Lines approach that uses the sphere camera model
cannot deal with the fish-eye system. All these approaches use a
non-linear step which allows them to have a reprojection error less
than 1 pixel. In this paper we perform a SfM experiment to com-
pare the different approaches with useful criteria. This experiment
showed that the calibration reached by any of these methods can
give accurate reconstruction results. The distribution of the points
in the omnidirectional images is important in order to have an
accurate calibration. These points have to cover as much as possi-
ble of the omnidirectional image and mainly in the peripheric area.
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